Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Front Endocrinol (Lausanne) ; 14: 1249700, 2023.
Article in English | MEDLINE | ID: mdl-37929024

ABSTRACT

Introduction: Perinatal asphyxia is one of the three most important causes of neonatal mortality and morbidity. Therapeutic hypothermia represents the standard treatment for infants with moderate-severe perinatal asphyxia, resulting in reduction in the mortality and major neurodevelopmental disability. So far, data in the literature focusing on the endocrine aspects of both asphyxia and hypothermia treatment at birth are scanty, and many aspects are still debated. Aim of this narrative review is to summarize the current knowledge regarding the short- and long-term effects of perinatal asphyxia and of hypothermia treatment on the endocrine system, thus providing suggestions for improving the management of asphyxiated children. Results: Involvement of the endocrine system (especially glucose and electrolyte disturbances, adrenal hemorrhage, non-thyroidal illness syndrome) can occur in a variable percentage of subjects with perinatal asphyxia, potentially affecting mortality as well as neurological outcome. Hypothermia may also affect endocrine homeostasis, leading to a decreased incidence of hypocalcemia and an increased risk of dilutional hyponatremia and hypercalcemia. Conclusions: Metabolic abnormalities in the context of perinatal asphyxia are important modifiable factors that may be associated with a worse outcome. Therefore, clinicians should be aware of the possible occurrence of endocrine complication, in order to establish appropriate screening protocols and allow timely treatment.


Subject(s)
Asphyxia Neonatorum , Hypothermia , Infant, Newborn , Infant , Pregnancy , Female , Child , Humans , Asphyxia/complications , Hypothermia/complications , Parturition , Asphyxia Neonatorum/complications , Asphyxia Neonatorum/therapy , Asphyxia Neonatorum/diagnosis , Endocrine System
2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894965

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the number of cases is constantly increasing. Early and accurate HCC diagnosis is crucial to improving the effectiveness of treatment. The aim of the study is to develop a supervised learning framework based on hierarchical community detection and artificial intelligence in order to classify patients and controls using publicly available microarray data. With our methodology, we identified 20 gene communities that discriminated between healthy and cancerous samples, with an accuracy exceeding 90%. We validated the performance of these communities on an independent dataset, and with two of them, we reached an accuracy exceeding 80%. Then, we focused on two communities, selected because they were enriched with relevant biological functions, and on these we applied an explainable artificial intelligence (XAI) approach to analyze the contribution of each gene to the classification task. In conclusion, the proposed framework provides an effective methodological and quantitative tool helping to find gene communities, which may uncover pivotal mechanisms responsible for HCC and thus discover new biomarkers.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Artificial Intelligence , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Genetic Markers , Health Status
3.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686163

ABSTRACT

Hepatocellular carcinoma (HCC) is a heterogeneous cancer characterized by various cellular subtypes. This study investigates the potential of a combination strategy using immunotherapy and epigenetic reprogramming against HCC. We used a transgenic HCC mouse C57BL/6J-TG(ALB1HBV)44BRI/J to assess the dynamics of the programmed death receptor and its ligand (PD-1/PD-L1) and DNA methylation markers. In parallel, PD-L1 RNA silencing was performed in various human HCC cell lines, while combination therapy was performed in a co-culture system using long-term exposure of 5-Azacytidine (5-AZA) and an anti-PD-L1. Data from the mouse model showed that the expressions of Pdcd1, Pdcd1l1, and DNA methyltransferase 1 (Dnmt1) were significantly higher in HCC as compared to the wild-type mice (p < 0.01), supported by the high presence of PD-L1 methylated DNA. In HCC cell lines, PD-L1 silencing was accompanied by DNMT1 reduction, mostly noted in aggressive HCC cell lines, followed by the dysregulation of the cancer stem cell marker EpCAM. In combination therapy, the growth of HCC cells and lymphocytes was limited by the PD-L1 antibody, further reduced in the presence of 5-AZA by up to 20% (p < 0.001). The data demonstrated that combination therapy might be an option as a potential treatment for heterogeneous HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Mice, Inbred C57BL , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , DNA Methylation , Down-Regulation , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Azacitidine/pharmacology , Azacitidine/therapeutic use
5.
J Exp Clin Cancer Res ; 42(1): 197, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37550785

ABSTRACT

BACKGROUND: Autotaxin (ATX) is a secreted enzyme that converts lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA stimulates cell proliferation and migration and promotes wound repair following tissue damage. ATX levels are directly correlated with stage and grade in several human cancers. Several small molecule ATX inhibitors have been developed in recent years. IOA-289 is a potent ATX inhibitor, developed to treat cancers containing fibrosis. In this study, we tested IOA-289 treatment on different gastrointestinal tract tumor cell lines, in order to evaluate its effects on viability and motility. METHODS: To determine the effects on cell viability and proliferation of treatment with increasing concentrations of IOA-289, we used the crystal violet assay, a clonogenic assay in matrigel, and we evaluated the inhibitor's effect on formation of 3D spheroids in an in vitro model. The effect of IOA-289 on cell cycle phases was analysed with a redox dye reagent. Cell migration capacity was evaluated by wound healing assay and transwell migration assay. To evaluate the pro-apoptotic effect of the inhibitor, cells were stained with Annexin V and immunofluorescence and flow cytometry analysis were performed. An antibody array was also used, to discriminate, in various samples, the differential expression of 43 proteins involved in the apoptosis pathway. RESULTS: We found that IOA-289 is able to inhibit both growth and migration of gastrointestinal tract tumor cell lines, both in 2D (crystal violet assay) and 3D in vitro models (spheroid formation and clonogenic assay in matrigel). This effect is dose-dependent, and the drug is most effective when administered in FBS-free culture medium. The inhibitory effect on cell growth is due to a pro-apoptotic effect of IOA-289. Staining with FITC-conjugated Annexin V showed that IOA-289 induced a dose-dependent increase in fluorescence following incubation for 24 h, and apoptotic cells were also distinguished in flow cytometry using Annexin/PI staining. The antibody array shows that treatment with IOA-289 causes the increased expression of several pro-apoptotic proteins in all tested cell lines. CONCLUSIONS: These results indicate that IOA-289 may be an effective drug for the treatment of tumors of the gastrointestinal tract, particularly those characterized by a high degree of fibrosis.


Subject(s)
Gastrointestinal Neoplasms , Phosphodiesterase Inhibitors , Humans , Annexin A5 , Cell Line, Tumor , Fibrosis , Gastrointestinal Neoplasms/drug therapy , Phosphoric Diester Hydrolases , Phosphodiesterase Inhibitors/pharmacology , Drug Evaluation, Preclinical
6.
Redox Biol ; 65: 102818, 2023 09.
Article in English | MEDLINE | ID: mdl-37463530

ABSTRACT

The NADPH oxidase NOX4 has been proposed as necessary for the apoptosis induced by the Transforming Growth Factor-beta (TGF-ß) in hepatocytes and hepatocellular carcinoma (HCC) cells. However, whether NOX4 is required for TGF-ß-induced canonical (SMADs) or non-canonical signals is not fully understood yet, neither its potential involvement in other parallel actions induced by TGF-ß. In this work we have used CRISPR Cas9 technology to stable attenuate NOX4 expression in HCC cells. Results have indicated that NOX4 is required for an efficient SMAD2/3 phosphorylation in response to TGF-ß, whereas non-canonical signals, such as the phosphorylation of the Epidermal Growth Receptor or AKT, are higher in NOX4 silenced cells. TGF-ß-mediated inhibition of cell proliferation and viability is attenuated in NOX4 silenced cells, correlating with decreased response in terms of apoptosis, and maintenance of high expression of MYC and CYCLIN D1. These results would indicate that NOX4 is required for all the tumor suppressor actions of TGF-ß in HCC. However, analysis in human HCC tumors has revealed a worse prognosis for patients showing high expression of TGF-ß1-related genes concomitant with high expression of NOX4. Deepening into other tumorigenic actions of TGF-ß that may contribute to tumor progression, we found that NOX4 is also required for TGF-ß-induced migratory effects. The Epithelial-Mesenchymal transition (EMT) program does not appear to be affected by attenuation of NOX4 levels. However, TGF-ß-mediated regulation of cytoskeleton dynamics and focal adhesions require NOX4, which is necessary for TGF-ß-induced increase in the chaperone Hsp27 and correct subcellular localization of Hic-5 within focal adhesions, as well for upregulation of the metalloprotease MMP9. All these results together point to NOX4 as a key element in the whole TGF-ß signaling in HCC cells, revealing an unknown role for NOX4 as tumor promoter in HCC patients presenting activation of the TGF-ß pathway.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Transforming Growth Factor beta , Liver Neoplasms/genetics , Liver Neoplasms/pathology , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Transforming Growth Factor beta1
7.
Biomedicines ; 11(2)2023 01 25.
Article in English | MEDLINE | ID: mdl-36830879

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignancy marked by heterogeneity. This study aimed to discover target molecules for potential therapeutic efficacy that may encompass HCC heterogeneity. In silico analysis using published datasets identified 16 proto-oncogenes as potential pharmacological targets. We used an immortalized hepatocyte (IHH) and five HCC cell lines under two subtypes: S1/TGFß-Wnt-activated (HLE, HLF, and JHH6) and the S2/progenitor subtype (HepG2 and Huh7). Three treatment modalities, 5 µM 5-Azacytidine, 50 µM Sorafenib, and 20 nM PD-L1 gene silencing, were evaluated in vitro. The effect of treatments on the proto-oncogene targets was assessed by gene expression and Western blot analysis. Our results showed that 10/16 targets were upregulated in HCC cells, where cells belonging to the S2/progenitor subtype had more upregulated targets compared to the S1/TGFß-Wnt-activated subtype (81% vs. 62%, respectively). Among the targets, FGR was consistently down-regulated in the cell lines following the three different treatments. Sorafenib was effective to down-regulate targets in S2/progenitor subtype while PD-L1 silencing was able to decrease targets in all HCC subtypes, suggesting that this treatment strategy may comprise cellular heterogeneity. This study strengthens the relevance of liver cancer cellular heterogeneity in response to cancer therapies.

8.
J Hum Genet ; 68(6): 437-443, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36810639

ABSTRACT

Among genodermatoses, trichothiodystrophies (TTDs) are a rare genetically heterogeneous group of syndromic conditions, presenting with skin, hair, and nail abnormalities. An extra-cutaneous involvement (craniofacial district and neurodevelopment) can be also a part of the clinical picture. The presence of photosensitivity describes three forms of TTDs: MIM#601675 (TTD1), MIM#616390 (TTD2) and MIM#616395 (TTD3), that are caused by variants afflicting some components of the DNA Nucleotide Excision Repair (NER) complex and with more marked clinical consequences. In the present research, 24 frontal images of paediatric patients with photosensitive TTDs suitable for facial analysis through the next-generation phenotyping (NGP) technology were obtained from the medical literature. The pictures were compared to age and sex-matched to unaffected controls using 2 distinct deep-learning algorithms: DeepGestalt and GestaltMatcher (Face2Gene, FDNA Inc., USA). To give further support to the observed results, a careful clinical revision was undertaken for each facial feature in paediatric patients with TTD1 or TTD2 or TTD3. Interestingly, a distinctive facial phenotype emerged by the NGP analysis delineating a specific craniofacial dysmorphic spectrum. In addition, we tabulated every single detail within the observed cohort. The novelty of the present research includes the facial characterization in children with the photosensitive types of TTDs through the 2 different algorithms. This result can become additional criteria for early diagnosis, and for subsequent targeted molecular investigations as well as a possible tailored multidisciplinary personalized management.


Subject(s)
Photosensitivity Disorders , Trichothiodystrophy Syndromes , Humans , Trichothiodystrophy Syndromes/diagnosis , Trichothiodystrophy Syndromes/genetics , Photosensitivity Disorders/diagnosis , Photosensitivity Disorders/genetics , Face , Hair , Phenotype , DNA Repair
9.
Cancers (Basel) ; 15(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36672323

ABSTRACT

Extracellular matrix (ECM) has a well-recognized impact on the progression of solid tumors, including hepatocellular carcinoma (HCC). Laminin 332 (Ln332) is a ECM molecule of epithelial basal lamina, composed of three polypeptide chains (α3, ß3, and γ2), that is usually poorly expressed in the normal liver but is detected at high levels in HCC. This macromolecule was shown to promote the proliferation, epithelial-to-mesenchymal transition (EMT), and drug resistance of HCC cells. The monomeric γ2 chain is up-regulated and localized preferentially at the invasive edge of metastatic intrahepatic HCC nodules, suggesting its potential involvement in the acquisition of invasive properties of HCC cells. HCC cells were tested in in vitro adhesion, scattering, and transwell migration assays in response to fibronectin and the Ln332 and Ln332 γ2 chains, and the activation status of major signaling pathways involved was evaluated. Here, we show that the Ln332 γ2 chain promotes HCC the cell adhesion, migration, and scattering of HCC cells that express the Ln332 receptor α3ß1 integrin, proving to be a causal factor of the EMT program achievement. Moreover, we found that efficient HCC cell adhesion and migration on γ2 require the activation of the small cytosolic GTPase Rac1 and ERKs signaling. These data suggest that the γ2 chain, independently from the full-length Ln332, can contribute to the pro-invasive potential of aggressive HCC cell subpopulations.

10.
Biomedicines ; 12(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38255193

ABSTRACT

Aggressive hepatocellular carcinoma (HCC) overexpressing Angiopoietin-2 (ANG-2) (a protein linked with angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT)), shares 95% of up-regulated genes and a similar poor prognosis with the proliferative subgroup of intrahepatic cholangiocarcinoma (iCCA). We analyzed the pro-invasive effect of ANG-2 and its regulator vascular endothelial growth factor (VEGF) on HCC and CCA spheroids to uncover posUsible common ways of response. Four cell lines were used: Hep3B and HepG2 (HCC), HuCC-T1 (iCCA), and EGI-1 (extrahepatic CCA). We treated the spheroids with recombinant human (rh) ANG-2 and/or VEGF and then observed the changes at the baseline, after 24 h, and again after 48 h. Proangiogenic stimuli increased migration and invasion capability in HCC- and iCCA-derived spheroids and were associated with a modification in EMT phenotypic markers (a decrease in E-cadherin and an increase in N-cadherin and Vimentin), especially at the migration front. Inhibitors targeting ANG-2 (Trebananib) and the VEGF (Bevacizumab) effectively blocked the migration ability of spheroids that had been stimulated with rh-ANG-2 and rh-VEGF. Overall, our findings highlight the critical role played by ANG-2 and the VEGF in enhancing the ability of HCC- and iCCA-derived spheroids to migrate and invade, which are key processes in cancer progression.

11.
J Exp Clin Cancer Res ; 41(1): 331, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443822

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant tumor characterized by an intensive desmoplastic reaction due to the exaggerated presence of the extracellular (ECM) matrix components. Liver fibroblasts close to the tumor, activated by transforming growth factor (TGF)-ß1 and expressing high levels of α-smooth muscle actin (α-SMA), become cancer-associated fibroblasts (CAFs). CAFs are deputed to produce and secrete ECM components and crosstalk with cancer cells favoring tumor progression and resistance to therapy. Overexpression of Notch signaling is implicated in CCA development and growth. The study aimed to determine the effectiveness of the Notch inhibitor, Crenigacestat, on the surrounding microenvironment of iCCA. METHODS: We investigated Crenigacestat's effectiveness in a PDX model of iCCA and human primary culture of CAFs isolated from patients with iCCA. RESULTS: In silico analysis of transcriptomic profiling from PDX iCCA tissues treated with Crenigacestat highlighted "liver fibrosis" as one of the most modulated pathways. In the iCCA PDX model, Crenigacestat treatment significantly (p < 0.001) reduced peritumoral liver fibrosis. Similar results were obtained in a hydrodynamic model of iCCA. Bioinformatic prediction of the upstream regulators related to liver fibrosis in the iCCA PDX treated with Crenigacestat revealed the involvement of the TGF-ß1 pathway as a master regulator gene showing a robust connection between TGF-ß1 and Notch pathways. Consistently, drug treatment significantly (p < 0.05) reduced TGF-ß1 mRNA and protein levels in tumoral tissue. In PDX tissues, Crenigacestat remarkably inhibited TGF-ß signaling and extracellular matrix protein gene expression and reduced α-SMA expression. Furthermore, Crenigacestat synergistically increased Gemcitabine effectiveness in the iCCA PDX model. In 31 iCCA patients, TGF-ß1 and α-SMA were upregulated in the tumoral compared with peritumoral tissues. In freshly isolated CAFs from patients with iCCA, Crenigacestat significantly (p < 0.001) inhibited Notch signaling, TGF-ß1 secretion, and Smad-2 activation. Consequently, Crenigacestat also inactivated CAFs reducing (p < 0.001) α-SMA expression. Finally, CAFs treated with Crenigacestat produced less (p < 005) ECM components such as fibronectin, collagen 1A1, and collagen 1A2. CONCLUSIONS: Notch signaling inhibition reduces the peritumoral desmoplastic reaction in iCCA, blocking the TGF-ß1 canonical pathway.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Transforming Growth Factor beta1 , Ecosystem , Liver , Bile Ducts, Intrahepatic , Fibrosis , Tumor Microenvironment
12.
Oncol Lett ; 24(5): 395, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36276500

ABSTRACT

The male/female ratio of patients with hepatocellular carcinoma (HCC) is often unbalanced towards the male sex, indicating a sex predisposition for HCC development. A possible explanation may be attributed to different hormonal statuses, including the pro-inflammatory action of androgens in men and the protective effects of oestrogen against excessive inflammation in women. Although several studies have studied gene expression in patients with HCC, very few have attempted to identify features that could be distinctive between male and female patients. The present study aimed to identify distinctive signalling mechanisms between men and women that may be associated with HCC progression. The present study analysed a detailed microarray database that was obtained from the prospective study of 78 patients with HCC to study gene expression according to sex. In addition, the present study aimed to evaluate whether the differentially expressed genes were known oestrogen targets. Moreover, RNAs from the HCC cohort were evaluated for microRNA (miRNA/miR) expression, and a relationship between miRNA and gene expression according to sex was investigated. One gene, sineoculis homeobox homolog 1 (SIX1), which is known to be an oestrogen target gene, was revealed to be highly upregulated in hepatitis virus C (HCV)-positive female patients with HCC but not in HCV-positive male patients. In addition, SIX1 upregulation had a significant relationship with tumour growth speed (assessed as tumour doubling time in two CTs performed 6 weeks apart) and survival (P=0.009 and P=0.042, respectively) in female patients only. Furthermore, SIX1 upregulation was related with miR-421 and miR-9-5p only in male patients; however, in female patients, SIX1 upregulation had a direct relationship with miR-181b, miR-503-5p and miR-125b (miRNAs with potential oncogenic capacity), and an inverse correlation with miR139-5p, miR-26b, let7c-3p and let7c-5p (putatively oncosuppressive microRNAs). These data suggested a distinctive model for liver carcinogenesis in HCV-positive women, with downregulation of protective mechanisms against tumour progression and the activation of potential oncogenes, in relation to the oestrogen target gene SIX1. (IRB10/08_CE_UniRer; ClinicalTrials ID: NCT01657695).

13.
Front Oncol ; 12: 960808, 2022.
Article in English | MEDLINE | ID: mdl-36158651

ABSTRACT

Background: Though the precise criteria for accessing LT are consistently being applied, HCC recurrence (HCC-R_LT) still affects more than 15% of the patients. We analyzed the clinical, histopathological, and biological features of patients with HCC to identify the predictive factors associated with cancer recurrence and survival after LT. Methods: We retrospectively analyzed 441 patients with HCC who underwent LT in our center. Overall, 70 (15.8%) of them developed HCC-R_LT. We matched them by age at transplant and etiology with 70 non-recurrent patients. A comparable cohort from the Liver Transplant Centre of Bologna served as validation. The clinical and biochemical characteristics and pre-LT criteria (Milan, Metroticket, Metroticket_AFP, and AFP model) were evaluated. Histological analysis and immunohistochemistry for angiopoietin-2 in the tumor and non-tumor tissue of explanted livers were performed. Patients' follow-up was until death, last clinical evaluation, or 31 December 2021. In patients with HCC-R_LT, the date of diagnosis of recurrence and anatomical site has been reported; if a biopsy of recurrence was available, histologic and immunohistochemical analyses were also performed. Results: Patients were followed up for a mean period of 62.7 ± 54.7 months (median, 39 months). A higher risk of HCC-R_LT was evident for factors related indirectly (AFP) or directly (endothelial angiopoietin-2, microvascular invasion) to biological HCC aggressiveness. In multivariate analysis, only angiopoietin-2 expression was independently associated with recurrence. Extremely high levels of endothelial angiopoietin-2 expression were also found in hepatic recurrence and all different metastatic locations. In univariate analysis, MELD, Metroticket_AFP Score, Edmondson-Steiner grade, microvascular invasion, and endothelial angiopoietin-2 were significantly related to survival. In multivariate analysis, angiopoietin-2 expression, Metroticket_AFP score, and MELD (in both training and validation cohorts) independently predicted mortality. In time-dependent area under receiver operating characteristic curve analysis, the endothelial angiopoietin-2 expression had the highest specificity and sensitivity for recurrence (AUC 0.922, 95% CI 0.876-0.962, p < 0.0001). Conclusions: Endothelial angiopoietin-2 expression is a powerful independent predictor of post-LT tumor recurrence and mortality, highlighting the fundamental role of tumor biology in defining the patients' prognosis after liver transplantation. The great advantage of endothelial angiopoietin-2 is that it is evaluable in HCC biopsy before LT and could drive a patient's priority on the waiting list.

14.
Cancers (Basel) ; 14(8)2022 04 09.
Article in English | MEDLINE | ID: mdl-35454809

ABSTRACT

Proteoglycans are a class of highly glycosylated proteins expressed in virtually all tissues, which are localized within membranes, but more often in the pericellular space and extracellular matrix (ECM), and are involved in tissue homeostasis and remodeling of the stromal microenvironment during physiological and pathological processes, such as tissue regeneration, angiogenesis, and cancer. In general, proteoglycans can perform signaling activities and influence a range of physical, chemical, and biological tissue properties, including the diffusivity of small electrolytes and nutrients and the bioavailability of growth factors. While the dysregulated expression of some proteoglycans is observed in many cancers, whether they act as supporters or limiters of neoplastic progression is still a matter of controversy, as the tumor promoting or suppressive function of some proteoglycans is context dependent. The participation of multiple proteoglycans in organ regeneration (as demonstrated for the liver in hepatectomy mouse models) and in cancer suggests that these molecules actively influence cell growth and motility, thus contributing to key events that characterize neoplastic progression. In this review, we outline the main roles of proteoglycans in the physiology and pathology of cancers, with a special mention to hepatocellular carcinoma (HCC), highlighting the translational potential of proteoglycans as targets or therapeutic agents for the treatment of this disease.

15.
Int J Mol Sci ; 23(8)2022 04 10.
Article in English | MEDLINE | ID: mdl-35457006

ABSTRACT

Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with limited therapeutic options and short overall survival. iCCA is characterized by a strong desmoplastic reaction in the surrounding ecosystem that likely affects tumoral progression. Overexpression of the Notch pathway is implicated in iCCA development and progression. Our aim was to investigate the effectiveness of Crenigacestat, a selective inhibitor of NOTCH1 signaling, against the cross-talk between cancer cells and the surrounding ecosystem in an in vivo HuCCT1-xenograft model. In the present study, a transcriptomic analysis approach, validated by Western blotting and qRT-PCR on iCCA tumor masses treated with Crenigacestat, was used to study the molecular pathways responsive to drug treatment. Our results indicate that Crenigacestat significantly inhibited NOTCH1 and HES1, whereas tumor progression was not affected. In addition, the drug triggered a strong immune response and blocked neovascularization in the tumor ecosystem of the HuCCT1-xenograft model without affecting the occurrence of fibrotic reactions. Therefore, although these data need further investigation, our observations confirm that Crenigacestat selectively targets NOTCH1 and that the desmoplastic response in iCCA likely plays a key role in both drug effectiveness and tumor progression.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Cholangiocarcinoma/metabolism , Ecosystem , Humans , Tumor Microenvironment
16.
Int J Mol Sci ; 22(23)2021 12 03.
Article in English | MEDLINE | ID: mdl-34884894

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly lethal cancer, and although a few drugs are available for treatment, therapeutic effectiveness is still unsatisfactory. New drugs are urgently needed for hepatocellular carcinoma (HCC) patients. In this context, reliable preclinical assays are of paramount importance to screen the effectiveness of new drugs and, in particular, measure their effects on HCC cell proliferation. However, cell proliferation measurement is a time-consuming and operator-dependent procedure. The aim of this study was to validate an engineered miniaturized on-chip platform for real-time, non-destructive cell proliferation assays and drug screening. The effectiveness of Sorafenib, the first-line drug mainly used for patients with advanced HCC, was tested in parallel, comparing the gold standard 96-well-plate assay and our new lab-on-chip platform. Results from the lab-on-chip are consistent in intra-assay replicates and comparable to the output of standard crystal violet proliferation assays for assessing Sorafenib effectiveness on HCC cell proliferation. The miniaturized platform presents several advantages in terms of lesser reagents consumption, operator time, and costs, as well as overcoming a number of technical and operator-dependent pitfalls. Moreover, the number of cells required is lower, a relevant issue when primary cell cultures are used. In conclusion, the availability of inexpensive on-chip assays can speed up drug development, especially by using patient-derived samples to take into account disease heterogeneity and patient-specific characteristics.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Cell Proliferation , Drug Evaluation, Preclinical/methods , Lab-On-A-Chip Devices , Liver Neoplasms/drug therapy , Sorafenib/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/physiopathology , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Liver Neoplasms/physiopathology
17.
Nanomaterials (Basel) ; 11(12)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34947582

ABSTRACT

In vitro cell models play important roles as testbeds for toxicity studies, drug development, or as replacements in animal experiments. In particular, complex tumor models such as hepatocellular carcinoma (HCC) are needed to predict drug efficacy and facilitate translation into clinical practice. In this work, topographical features of amorphous silicon dioxide (SiO2) are fabricated and tested for cell culture of primary HCC cells and cell lines. The topographies vary from pyramids to octahedrons to structures named fractals, with increased hierarchy and organized in periodic arrays (square or Hexagonal). The pyramids were found to promote complex 2D/3D tissue formation from primary HCC cells. It was found that the 2D layer was mainly composed of cancer-associated fibroblasts (CAFs), while the 3D spheroids were composed of tumor cells enwrapped by a CAF layer. Compared with conventional protocols for 3D cultures, this novel approach mimics the 2D/3D complexity of the original tumor by invading CAFs and a microtumor. Topographies such as octahedrons and fractals exclude tumor cells and allow one-step isolation of CAFs even directly from tumor tissue of patients as the CAFs migrate into the structured substrate. Cell lines form spheroids within a short time. The presented inorganic topographical surfaces stimulate complex spheroid formation while avoiding additional biological scaffolds and allowing direct visualization on the substrate.

18.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34769191

ABSTRACT

The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFß) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFß on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFß receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFß-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFß-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFß as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFß signaling as a therapeutic target in HCC patients.


Subject(s)
Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta1/immunology , Tumor Microenvironment , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Carcinoma, Hepatocellular/pathology , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Liver Neoplasms/pathology , T-Lymphocytes, Regulatory/pathology , Transendothelial and Transepithelial Migration
19.
Int J Mol Sci ; 22(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073989

ABSTRACT

(1) Background: The transforming growth factor (TGF)-ß plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-ß expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-ß induced suppressor effects, responding to this cytokine undergoing epithelial-mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-ß in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-ß when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-ß in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Epithelial-Mesenchymal Transition/drug effects , Lipid Metabolism/drug effects , Liver Neoplasms/metabolism , Metabolome/drug effects , Transcriptome/drug effects , Transforming Growth Factor beta/pharmacology , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing , Hep G2 Cells , Humans , Metabolome/genetics , Metabolomics , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Transcriptome/genetics
20.
Cell Death Dis ; 12(4): 316, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767160

ABSTRACT

The prognosis of locally advanced colorectal cancer (CRC) is currently unsatisfactory. This is mainly due to drug resistance, recurrence, and subsequent metastatic dissemination, which are sustained by the cancer stem cell (CSC) population. The main driver of the CSC gene expression program is Wnt signaling, and previous reports indicate that Wnt3a can activate p38 MAPK. Besides, p38 was shown to feed into the canonical Wnt/ß-catenin pathway. Here we show that patient-derived locally advanced CRC stem cells (CRC-SCs) are characterized by increased expression of p38α and are "addicted" to its kinase activity. Of note, we found that stage III CRC patients with high p38α levels display reduced disease-free and progression-free survival. Extensive molecular analysis in patient-derived CRC-SC tumorspheres and APCMin/+ mice intestinal organoids revealed that p38α acts as a ß-catenin chromatin-associated kinase required for the regulation of a signaling platform involved in tumor proliferation, metastatic dissemination, and chemoresistance in these CRC model systems. In particular, the p38α kinase inhibitor ralimetinib, which has already entered clinical trials, promoted sensitization of patient-derived CRC-SCs to chemotherapeutic agents commonly used for CRC treatment and showed a synthetic lethality effect when used in combination with the MEK1 inhibitor trametinib. Taken together, these results suggest that p38α may be targeted in CSCs to devise new personalized CRC treatment strategies.


Subject(s)
Chromatin/metabolism , Colorectal Neoplasms/drug therapy , Mitogen-Activated Protein Kinase 14/metabolism , Neoplastic Stem Cells/metabolism , Organoids/metabolism , Protein Processing, Post-Translational/genetics , beta Catenin/metabolism , Colorectal Neoplasms/genetics , Humans , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...